Lines

Since we used Deckname C1 with the Red cross-disperser, this page tells us our resolution is 50,000.

(1)
\begin{align} R = 50,000 = \frac{\lambda}{\Delta \lambda} = \frac{c}{\Delta v} \end{align}

So:

(2)
\begin{align} \Delta v = 6000 m/s \end{align}

To find out our km/s per pixel, it just takes some algebra…

(3)
\begin{align} \Delta \lambda = \frac{\lambda}{R} \end{align}
(4)
\begin{align} \Delta v = \frac{c}{R} \end{align}

Find out the spacing of the data at the wavelength that you're interested in — let's call it 's'; then we'd have:

(5)
\begin{align} \frac{\Delta \lambda}{s} = \Delta v \end{align}

Resolution per pixel is then;

(6)
\begin{align} \frac{\Delta v s }{\Delta \lambda} \end{align}

which in our case is ~ 1.3 km/s per pixel.

A full calculation to see what goes on:

Measured Lambda Delta Lambda Pixel spacing @ Lambda Delta Lambda/Pixel km/s per pixel
5322.492538718 0.10644985077436 0.023 4.62825438149391 1.29638509585623

Now, for the sigma for the kernel that goes into our calibrations: it depends on the resolution and the wavelength of the order only… So…

Since the resolution is the FWHM; it relates to sigma via: 2.35*sigma = FWHM

(7)
\begin{align} \sigma = \frac{\lambda_{center}}{50,000*2.35482} \end{align}
Transition order q value min σv (m/s) Iodine cell coverage? Wavelength f-value Gamma Atomic mass
FeII 1608.45 67 −1030 ± 300 ∗ 25.0 yes 1608.45085 0.0577 2.74e8 55.91
FeII 1611.20 67 1560 ± 500∗ 153 yes 1611.20034 1.38e-3 2.86e8 55.91
AlII 1670.79 65 270±?∗∗∗ 34.0 yes 1670.7886 1.740 1.390e9 27.00
NiII 1709.60 63 −20 ± 250∗∗ 83.1 yes 1709.6042 0.0324 4.35e8 58.76
NiII 1741.55 62 −1400 ± 250∗∗ 48.7 yes 1741.5531 0.042700 5.00E8 58.76
NiII 1751.92 62 −700 ± 250∗∗ 70.8 yes 1751.9157 0.027700 3.70E8 58.76
SiII 1808.01 60 520 ± 30∗∗ 36.4 yes 1808.01288 0.00208 2.38e6 28.11
AlIII 1854.72 58 464±?∗∗∗ 76.0 yes 1854.71829 0.559 5.42e8 27.00
AlIII 1862.79 58 216±?∗∗∗ 125 yes 1862.79113 0.278 5.34e8 27.00
SiII 1526.71 71 50 ± 30∗∗ 28.8 no 1526.70698 0.13300 1.13E9 28.11
ZnII 2026.14 53 2488 ± 25∗∗∗∗ 129 no 2026.13709 0.501 4.07e8 65.47
ZnII 2062.66 52 1585 ± 25∗∗∗∗ 229 no 2062.66045 0.246 3.86e8 65.47
CrII 2056.26 52 −1030 ± 150∗∗ 89.9 no 2056.25693 0.1030 4.07e8 52.06
CrII 2062.24 52 −1168 ± 150∗∗ 102 no 2062.23610 0.0759 4.06e8 52.06
CrII 2066.16 52 −1360 ± 150∗∗ 143 no 2066.16403 0.0512 4.17e8 52.06
FeII 2344.21 46 1540 ± 400∗ 41.7 no 2344.2129601 0.1142 2.680e8 55.91
Transition Order Rest wav. Measured wav.
Si 1808 60 1808.0126 5982.802286
Ni 1751 62 1751.91 5797.15603
Ni 1741 62 1741.549 5762.870976
Ni 1709 63 1709.6 5657.15017
Fe 1611 67 1608.45085 5322.492538718
Fe 1608 67 1611.20034 5331.5908210872

Lines from the 2003 Nature paper:

Transition Observed wav. Order
MnII 1197 3960.97
KrI 1235 4086.71
GeII 1237 4093.33
MgII 1240 4103.26
AsII 1263 4179.37
CII 1347 4457.33
OI 1355 4483.8
CuII 1358 4493.73
BII 1362 4506.97
SnII 1400 4632.71
GaII 1414 4679.04
PbII 1433 4741.91
GeII 1602 5301.15 67

Lines from 2003 Nature paper:

Transition Observed wav.
MnII 1197 3960.97
KrI 1235 4086.71
GeII 1237 4093.33
MgII 1240 4103.26
AsII 1263 4179.37
CII 1347 4457.33
OI 1355 4483.8
CuII 1358 4493.73
BII 1362 4506.97
SnII 1400 4632.71
GaII 1414 4679.04
PbII 1433 4741.91
GeII 1602 5301.15

Previous Upper Limits

Transition Process Rest wav. Measured wav.
O SnII 1355.6 4485.7468244
Sn s 1400.4 4633.9922
Pb s 1433.9 4744.845
Te r 1404.6 4647.8902

Art's Proposal Listed
To get the resolution we need a S/N of ~70

What we get

All No I2 I2
Combined 345 345 345
S/N 60 80 52
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-Share Alike 2.5 License.